10月25日,中国科学院金属研究所沈阳材料科学国家研究中心先进炭材料研究部科研人员在《自然·通讯》上在线发表了题为“垂直结构的硅-石墨烯-锗晶体管”的研究论文。科研人员首次制备出以肖特基结作为发射结的垂直结构的硅-石墨烯-锗晶体管,成功将石墨烯基区晶体管的延迟时间缩短了1000倍以上,可将其截止频率由兆赫兹(MHz)提升至吉赫兹(GHz)领域,并在未来有望实现工作于太赫兹(THz)领域的高速器件。
1947年,第一个双极结型晶体管(BJT)诞生于贝尔实验室,标志着人类社会进入了信息技术的新时代。在过去的几十年里,提高BJT的工作频率一直是人们不懈的追求,异质结双极型晶体管(HBT)和热电子晶体管(HET)等高速器件相继被研究报道。然而,当需要进一步提高频率时,这些器件遭遇了瓶颈。HBT的截止频率将最终被基区渡越时间所限制,而HET则受限于无孔、低阻的超薄金属基区的制备难题。石墨烯是一种近年来被广泛研究且性能优异的二维材料,人们提出使用石墨烯作为基区材料制备晶体管,其原子级厚度将消除基区渡越时间的限制,同时其超高的载流子迁移率也有助于实现高质量的低阻基区。已报道的石墨烯基区晶体管普遍采用隧穿发射结,然而隧穿发射结的势垒高度严重限制了该晶体管作为高速电子器件的发展前景。
金属所科研人员提出半导体薄膜和石墨烯转移工艺,首次制备出以肖特基结作为发射结的垂直结构的硅-石墨烯-锗晶体管(图1)。与已报道的隧穿发射结相比,硅-石墨烯肖特基结表现出目前最大的开态电流(692 A cm-2 @ 5V)和最小的发射结电容(41 nF cm-2),从而得到最短的发射结充电时间(118 ps),使器件总延迟时间缩短了1000倍以上(128 ps),可将器件的截止频率由约1.0 MHz提升至1.2 GHz(图2)。通过使用掺杂较重的锗衬底(0.1 Ω cm),可实现共基极增益接近于1且功率增益大于1的晶体管(图3)。科研人员同时对器件的各种物理现象进行了分析(图4)。通过基于实验数据的建模,科研人员发现该器件具备了工作于太赫兹领域的潜力。
该项研究工作极大地提升了石墨烯基区晶体管的性能,为未来最终实现超高速晶体管奠定了基础。
图1 硅-石墨烯-锗晶体管的设计和制备。a. 器件的制备流程。b-d. 器件的光学、SEM和截面示意图。e. 器件原理示意图。
图2 硅-石墨烯发射结性能。a. 发射结IV曲线。 b. 漏电流和温度的依赖关系。c. 与隧穿发射结的开态电流的对比。 d. 与隧穿发射结的共基极截止频率的对比。
图3 硅-石墨烯-锗晶体管性能。a-d. 使用轻掺杂Ge衬底时的硅-石墨烯发射结和石墨烯-锗集电结IV曲线、输入(Ie-Ve)和转移(Ic-Ve)特性曲线、共基极增益α、输出特性(Ic-Vc)曲线。e-h. 使用重掺杂Ge衬底时的相应曲线。
图4 考虑石墨烯量子电容效应时晶体管的能带示意图。a. 无偏压。b. 发射结正偏。c. 集电结反偏。相关物理现象及应用研究介绍详见论文补充材料。
(中国日报辽宁记者站)